Quadrature and Schatz’s Pointwise Estimates for Finite Element Methods

نویسنده

  • J. GUZMÁN
چکیده

We investigate numerical integration effects on weighted pointwise estimates. We prove that local weighted pointwise estimates will hold, modulo a higher order term and a negative-order norm, as long as we use an appropriate quadrature rule. To complete the analysis in an application, we also prove optimal negative-order norm estimates for a corner problem taking into account quadrature. Finally, we present an example to show that our result is sharp.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Piecewise linear finite element methods are not localized

Recent results of Schatz show that standard Galerkin finite element methods employing piecewise polynomial elements of degree two and higher to approximate solutions to elliptic boundary value problems are localized in the sense that the global dependence of pointwise errors is of higher order than the overall order of the error. These results do not indicate that such localization occurs when ...

متن کامل

Sharply localized pointwise and W∞-1 estimates for finite element methods for quasilinear problems

We establish pointwise andW−1 ∞ estimates for finite element methods for a class of second-order quasilinear elliptic problems defined on domains Ω in Rn. These estimates are localized in that they indicate that the pointwise dependence of the error on global norms of the solution is of higher order. Our pointwise estimates are similar to and rely on results and analysis techniques of Schatz fo...

متن کامل

Pointwise a posteriori error estimates for monotone semi-linear equations

We derive upper and lower a posteriori estimates for the maximum norm error in finite element solutions of monotone semi-linear equations. The estimates hold for Lagrange elements of any fixed order, non-smooth nonlinearities, and take numerical integration into account. The proof hinges on constructing continuous barrier functions by correcting the discrete solution appropriately, and then app...

متن کامل

Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces

We define higher-order analogs to the piecewise linear surface finite element method studied in [Dz88] and prove error estimates in both pointwise and L2-based norms. Using the Laplace-Beltrami problem on an implicitly defined surface Γ as a model PDE, we define Lagrange finite element methods of arbitrary degree on polynomial approximations to Γ which likewise are of arbitrary degree. Then we ...

متن کامل

Localized pointwise error estimates for mixed finite element methods

In this paper we give weighted, or localized, pointwise error estimates which are valid for two different mixed finite element methods for a general second-order linear elliptic problem and for general choices of mixed elements for simplicial meshes. These estimates, similar in spirit to those recently proved by Schatz for the basic Galerkin finite element method for elliptic problems, show tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005